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ABSTRACT. Classification of a protein into a family of related proteins on
the basis of its amino acid sequence is frequently done via a probabilistic
model, usually a hidden Markov model (HMM). However, there are a variety
of reasons - based on general modeling issues, the statistical properties of
protein sequences, or biological considerations - that suggest that HMMs may
not be the best type of probabilistic model to use for this classification task.
In this paper we examine some issues in the use of HMMs as protein family
profilers, and propose the use of another type of probabilistic model for this
problem, namely the conditional random field (CRF); we also outline the the
design of a CRF model to be used as a protein family classifier.

1. Protein Families and Sequence Classification

A protein family may be defined (loosely) as a group of proteins with similar
biochemical function and a high degree of sequence identity when aligned. The
classification of a protein’s residue sequence as a member of a particular family is
an important goal of bioinformatics; as Borodovsky and Ekisheva say ([BD], p.126),

. it is important to develop efficient computational tools able
to assign a protein from a newly predicted gene to one of [the] al-
ready established families, thus characterizing the protein based
on its amino acid sequence alone.

They go on to enumerate the desiderata for a protein family classification al-
gorithm:

The computational tools that are required to solve the classifica-
tion problem should be able to: (i) make use of known structural
patterns specific for a given family, (ii) detect the family patterns
in the new protein sequence by alignment of the new protein to
the family model, and (iii) assess the statistical significance of
the detected similarity in order to help correctly identify the true
family members.

Currently, membership in a protein family is usually determined in one of two
ways: first, by a multiple sequence alignment, or second, by being scored with
a probabilistic model. Overwhelmingly the type of probabilistic model chosen to
model a protein family has been the hidden Markov model, or HMM.
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However, we shall argue in this paper that, despite their widespread acceptance,
there are cogent reasons why hidden Markov models are not the most suitable class
of probabilistic models for the protein family classification task. Instead, we propose
the use of a type of probabilistic model of relatively recent formulation, the condi-
tional random field (CRF) model, which, we believe, offers several advantages over
hidden Markov models; and we shall suggest how the design and implementation
of a CRF model for protein sequence classification might be carried out.

2. Hidden Markov Models and Family Classification
We begin by reviewing the use of HMMs to profile protein families.

2.1. Definition of HMMs. Let us recall the formal definition of a hidden
Markov model, beginning with the definition of a Markov chain.

A Markov chainis a countable, discrete-valued stochastic process {1, Ya,...Yy,...}
such that for each n we have

(2.1) P(Yp|Y1,Ys, .. Yo 1) = P(Yp|Yu_1)

that is, each Y; is dependent only on the immediately preceding Y.

Thus, we think of a Markov chain as a stochastic process which can assume
one of a number of states chosen from a finite set S = {s1, s2,...s,} and which can
change from one state to another at each ¢t = 1,2,.... It is usually assumed that
this process is stationary, i.e., that the probabilities of transition from one state to
another at time ¢ remain constant over ¢.

A hidden Markov model consists of two countable discrete-valued stochastic
processes {Y;} and {X;} such that

(1) {Y;} is a Markov chain;
(2) P(X,|Y1,Y2,..Y,, 1, X4,..X,,—1) = P(X,|Y,) ie., X; is dependent only
onY;.

Informally, we think of each value of the stochastic process X as an observation,
an element of an output ”alphabet” O = {01, 09, ...0, }, emitted by the Markov
chain Y; in most applications (including the one we are concerned with here), the
underlying states assumed by Y are not observable (i.e., hidden).

To completely determine a HMM, the following sets of probabilities must be
specified:

(1) for each pair s;,s; of states of Y, the probability a;; that ¥ will be in
state j at time t + 1, given that it is in state ¢ at time ¢;
(2) for each state of Y s; and output observation oy, the probability e;, that
Xi = og, given that Y; = s;.
(Some definitions of HMMs also require a vector of initial state probabilities, but
this can be incorporated into our definition by the specification of a ”Start” state,
so that the initial probabilities are just the transition probabilites from the Start
state.)

The transition probabilities also determine the structure of a directed graph,
whose vertices are the Markov chain states and which have an edge from vertex s;
to vertex s; if the probability of a transition from state s; to state s; is strictly
greater than 0.

As an example, consider the protein family profile HMM originally proposed
by Krogh et al. ([KB]). The Markov chain had three hidden states: M, I, and D,
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standing for (respectively) Match, Insert, and Delete. The Match state emitted
an amino acid in a consensus position; the Insert state could emit any amino acid
in a non-consensus position; and the Delete state was a non-emitting state and
corresponds to skipping a state in the alignment.

2.1.1. HMM algorithms. There are three basic computational problems which
arise in the use of HMMs:

(1) given a sequence of observations, compute the probability of that sequence
with respect to a known HMM,;

(2) given a sequence of observations, find the most probable sequence of states
in a known HMM that could have produced the sequence;

(3) given a set of output sequences, compute the parameters of an HMM
model that could have produced those sequences.

(The process of determining the values of the transition probabilities a;; and
the emission probabilities e;; from empirical data is referred to as parameterization
of the model, or as training the model.)

The widespread use of HMMs in bioinformatics (and in other areas of proba-
bilistic modeling) is due in part to simplicity and efficiency of the algorithms that
are available for these computational tasks: the forward-backward algorithm for 1),
the Viterbi algorithm for 2), and the Baum-Welch algorithm for 3).

2.2. The use of profile HMMs to determine membership of a se-
quence in a family. In this section we shall review the application of profile
HMMs to determine whether a protein is a member of a family. As an example,
we take the case of profile HMMs applied to the Pfam database, as described in
[SE] (more precisely, this description applies to Pfam-A 2.0). First, a manually
verified multiple sequence alignment, known as a seed alignment, is computed for a
representative set of sequence from the family (for this version of Pfam an average
of 22 proteins per family were used for this stage). Second, a HMM-profile is built
by training a HMM on each representative alignment. Third, to determine whether
a new sequence is a member of the profiled family, its probability of occurring by
chance (E-value) is computed using the HMM; if the E-value is less than a certain
threshold, the protein is classified as a member of that family.

3. Critique of HMMs as probabilistic models of protein sequence
families

The use of HMMs as probabilistic models for use in determining membership of
a sequence, as described in the previous section, has found widespread acceptance.
However, there are certain limitations of HMMs, and characteristics of the protein
sequence classification problem, which suggest that HMMs may not the best type of
probabilistic model for this classification problem. In this section we examine these
issues, which fall into three categories: general modeling considerations, statistical
properties of protein sequences, and biologically-based considerations.

3.1. Modeling issues. Birney ([B]) notes several issues in the application of
HMDMSs to sequence analysis, among them the inability of HMMs to incorporate
structural information into profile HMMs:

Despite the almost obvious application of using structural infor-
mation on a member protein family when one exists to better
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the parameterization of the HMM, this has been extremely hard
to achieve in practice.

Protein structural information is just one of a number of types of information
other than sequence information which could aid in a correct classification if a
way could be found to integrate it into the framework of the model type being
used; other types of information include amino acid composition, physicochemical
properties of the residues, phylogenetic properties of the sequence as a whole, and
annotations which identify the biological function of residues (e.g., binding sites).

A somewhat more subjective, but still significant, issue is that of model ”fit”
to the abstract structure of the classification problem. The classical applications
of HMMs - e.g., to speech recognition, or part-of-speech tagging in computational
linguistics - are to families of sequences in which the linearity of the sequence is
imposed by the temporal ordering of the set as it is being generated. In the case of
protein sequences, there is no such temporal ordering - the sequential arrangement
of the residues in a protein is the result, ultimately, of evolutionary change operating
on the gene that encodes the protein; there is no correspondence between the age of
an evolutionary change and its position (i.e., its displacement from the end of the
ordered arrangement of residues) - unlike, for instance, the modeling of phonemes
in speech recognition, where the temporal ordering is an inherent aspect of human
language. Thus the imposition of a strict linear ordering implied by the Markov
model is unnatural in the context of this problem.

3.1.1. Classes of models: generative and discriminative. Another modeling is-
sue with HMMSs relates to a distinction between two categories of probabilistic
models. Hidden Markov models are examples of what are known as generative
models. Such models compute the joint distribution P(X,Y) for all combinations
of observations X and underlying states Y'; they then classify their input by using
Bayes’ rule to compute P(Y|X), and pick the ¥ which maximizes this probability.
Training such a model usually consists of finding parameter values which maximize
the joint likelihood of the training data.

This is in contrast to discriminative models, which compute the conditional
probabilities P(Y'|X) directly, and then classify their input based on that probabil-
ity. Training such models consists of finding parameters to maximize the likelihood
of the training data with respect to the conditional probabilities, so there is no need
compute the likelihood of the input observations of the training data, and there is
therefore less work involved in training these models. Discriminative models are
usually regarded as superior, since, in a classification problem, there is no need to
compute the probability of the observations X ; these are input to the classifier when
it is applied. (For example, the results reported in [NJ] show a lower asymptotic
error for discriminative classifiers).

3.1.2. Training bias. As we noted in the previous discussion of profile training,
the parameterization of profile HMMSs is done by applying the Baum-Welch algo-
rithm to a set of multiply aligned sequences from the family under consideration;
no examples of sequences from other families are used. It is very unusual to train
a classifier only on positive examples, since otherwise it may not be effective at
rejecting cases which do not belong to the class.

As Strope and Moriyama note in their discussion of a classifier not based on
alignments, ([SM]),



CONDITIONAL RANDOM FIELDS FOR CLASSIFICATION OF PROTEIN FAMILIES 5

[A] disadvantage shared by ... multiple alignment-based methods
is that their models are built only from positive samples (protein
sequences of interests), and information from negative samples
(unrelated protein sequences) is not directly incorporated. Since
subsequently found proteins are classified based on these models,
possible initial sampling bias is kept and possibly reinforced.

3.2. Statistical properties of protein sequences.

3.2.1. Observed Distribution of Gaps in Multiple Sequence Alignments. Con-
sider a simplified Markov model, which has two states, Residue and Gap, and
transition probabilities greater than zero for all four possible state transitions. If
we make this into a hidden Markov model by allowing the Gap state to emit only
the symbol ”Gap”, and the Residue state to emit any of the 20 amino acids found
in proteins, the resulting HMM can generate any sequence that might result from
a multiple sequence alignment. All profile HMMs contain a node like the Gap node
in this model, which is needed to generate Gap subsequences of arbitrary length in
multiple alignments.

Now, the lengths of contiguous subsequences of gaps in the sequences gener-
ated by this model will follow an exponential distribution (for a derivation of this
property see, for example, [DE], p. 69). However, investigations of the statistics
of multiple alignments of protein sequences - such as the multiple alignments that
profile HMMSs are trained on - have consistently shown that these lengths obey
a power law distribution (see, for example, [C], and the references cited therein),
not an exponential distribution. Thus profile HMMs model a distribution for Gap
subsequences that does not reflect the distributions found empirically. A number
of somewhat ad-hoc modifications to the basic HMM model have been proposed to
deal with this anomaly, for example so-called duration HMMSs; however, we main-
tain that it is preferable to use a class of model in which this problem does not
arise.

3.2.2. Correlational analysis of protein sequences and the HMM independence
assumptions. Another issue with HMMs is that the Markovian assumptions of con-
ditional independence between non-adjacent residue positions actually do not hold
([HK]). !

In this section we will review some of the evidence that these assumptions are
in fact unwarranted.

In [WH], Weiss and Herzel considered correlations within sequences over large
sets of non-homologous proteins. The autocorrelations (i.e., the correlations the
value at a residue position and another one k positions away in the sequence for
1 < k < 40) were evaluated for two sets of proteins. The first set contained 1,733
sequences of length close to 125 residues from the Swiss-Prot database which were
considered to be dissimilar based on their BLAST scores. The second set consisted
of 2192 proteins, each of which was the first member of its superfamily in the PIR
sequence database.

Since the computation of the autocorrelation function required that the se-
quence positions contain numeric values, each residue in a sequence was mapped
to a number; this was done in ten different ways for each protein. The values

1Although it might be objected that the same criticism could be made of the use of HMMs
in computational linguistics.
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reflected physical chemistry properties of the amino acids: four were indicator vari-
ables for the properties of acidic, basic, neutral polar, and neutral hydrophobic;
three were values on a continuous hydrophobicity scale; and two were alpha-helix
and beta-strand propensity scores.

After applying finite-sample corrections to the estimation of the autocorrelation
coefficients, they found a number of small but statistically significant correlations.
In particular, the hydrophobicity correlations tended to oscillate with a period of
three or four positions - suggestive of the 3.6-residue periodicity of alpha-helices -
and correlations in the alpha-helix propensity score which decay almost monotoni-
cally from k =1 to k = 10.

In [HK], Hemmerich and Kim examine correlations between positions in protein
sequences by use of the mutual information of pairs of residue positions in the
primary sequence.

If (s',...,s") is a sequence of symbols (interpreted as values assumed by n
random variables), the distance d mutual information is defined as

P, x;)
(3.1) % EZjP 26 23)1002 (B B

where Py(x;,x;) is the probability of the residues z; and z; occuring in the
sequence exactly d positions apart, and P(z;) and P(z; are the (marginal) prob-
abilities of those residues occurring in the sequence. (Here we are considering the
sequence of a single protein).

Since the mutual information represents the reduction in entropy of a random
variable given another random variable, the magnitude of the mutual information
will be affected by the entropy of the two random variables; to correct for this,
they use a normalization suggested by Martin et al. in [MG], namely dividing the
mutual information by the entropy of the joint distribution, given by

32) =3 Y o
JEX AIEY 4 !

In addition, to estimate Py and P from a sample the size of a protein sequence,
some correction must be made to allow for small sample effects (see [HK] for details
of this correction).

After applying this correction to the estimates from actual protein sequences,
they found statistically significant values of the normalized mutual information,
even between widely separated (i.e., d > 19) positions, in protein sequences taken
from different families in the PFAM database.

Now if non-adjacent positions within the sequence were truly statistically in-
dependent (as required by the Markov assumption), the mutual information at
distance d for d > 0 would be zero. Hence this study fails to confirm the indepen-
dence hypothesis assumed by the hidden Markov model.

3.3. Biological issues. Last, we consider issues with HMMs that arise from
biological considerations.

The first has to do with the (somewhat deeper) issue of what should be consid-
ered a protein family - although this concept is often defined in terms of sequence
alignments, this may be misleading. As Opiyo and Moriyama ([OM]) note,
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Some homologous proteins are highly diverged and lack enough
sequence similarities even though they still share similar struc-
tures, biochemical properties, and functions. Obtaining reliable
alignments among these protein sequences is difficult.

Since profile HMMs are essentially an alignment-based method, these types of ho-
mologous sequences will not be regarded by a profile HMM as belonging to the
same family.

A second issue is related to the size of the training set. For already well-defined
families, the choice and multiple alignment of a training set of reasonable size is
straightforward. In the case of families which have not been as extensively studied,
however, this may not be the case. The following example is cited by Opiyo and
Moriyama ([OM]):

... the mildew resistance locus O (MLO) family is plant specific
and currently only 15 member proteins are known. In total, only
22 GPCRs (G-protein coupled receptors) are known in the Ara-
bidopsis thaliana genome, in a stark contrast to 1000 or more
GPCRs found in human and mouse. It is possible that plants do
not require this protein superfamily as much as animals. How-
ever, it is also possible that classifiers used to identify these pro-
teins (mostly profile HMMs) are affected by insufficiently repre-
sented training datasets.

Thus, the sensitivity of HMM model parameters to the small number of exam-
ples in a training set may lead to in an incorrect biochemical conclusion (i.e, ”
plants may not require this superfamily as much as animals.”).

4. Conditional random fields for protein family classification

Conditional random fields (CRFs) have only recently started to be applied
to bioinformatics. For instance, a recent text on methods for computational gene
prediction ([M]) covers HMMs and various generalizations of HMMs at some length,
but briefly mentions CRFs only once ([M], p. 383), without giving details of how
they could be applied to the gene prediction problem.

4.1. Definition of conditional random fields. Conditional random fields
can be thought of as generalizations of Markov random fields, which we now define.

DEerFINITION 4.1. If G = (V, E) is an undirected graph with vertices V' and
edges E, and Y is sets of random variables with Y = {Y, },ev, then Y is a Markov
random field with respect to G if

(4.1) P(Y,y|Yw,w # v) = P(Yy|Yy,w ~ )

That is, each Y,, satisfies a Markov property with respect to G - its dependences
on the other random variables within the set Y are limited to those members of Y
corresponding to vertices adjacent to v in G.

DEerFINITION 4.2. ([LMP]) If ¥ and X are sets of random variables with Y
corresponding as before to the vertices V of the graph G, then (X,Y) is a conditional
random field if the set of conditional random variables Y| X form a Markov random
field with respect to G.



8 THOMAS J. EMERSON

Although conditional random fields have been introduced relatively recently,
Markov random fields have been studied for some time (mainly in the context of
statistical physics - see, for example, [KS]).

We can also think of CRFs as generalizations of HMMs - the conditioning
random variables X are the observations, and the variables Y are the states.

4.1.1. Probabilities in CRFs. Although we have said very little about what
conditions the joint distribution P in the definition of CRFs must satisfy, the con-
ditions 4.1 in the definition in fact impose fairly stringent constraints on the form
that P can take. According to the Hammersley-Clifford Theorem ([CL]), P must be
a product of ”potential functions” which are constant on the cliques (i.e., complete
subgraphs) of the graph G. We will not discuss this further, except to note that
this theorem accounts for the form of probabilities defined on the graphical model.

The form of conditional probability is then

(4.2) P(Y|X) = Z—lxexp(z M fe(X,Y))
k

where the fi are ”feature functions” defined on the observation sequence X and
state sequence Y, the )\, are weights learned from the training data, and Zx is a
normalization factor needed to make the probabilities sum to 1.0. It is the flexibility
of the feature functions, and the fact that they operate on the entire observation se-
quence, that allow CRFs to utilize information which is not restricted to properties
of a single observation or vertex. For instance, it would be easy to accommodate
gap penalties that are computed from the length (or perhaps position) of a gap
subsequence, rather than incur a fixed penalty for each occurrence of a gap in an
alignment.

The form of the graph G can in principle be arbitrary; the form of graph
considered by Lafferty et al., and commonly used in modeling sequential data, is
known as a linear chain: if there are n nodes in the set V', there is a edge between
v; and v;41 for i = 1,2, ...,n—1, and no other edges (see Figure 2). Since the cliques
in such a graph cousist of i) the individual vertices and ii) the pairs of vertices that
are joined by edges, the expression for the conditional probability P becomes

1
(4.3) PY|X) = ——eap( > Mfu(X,Yese)+ Y pigi(X, V)
Zx cCE,k veV,j

(where Y, denotes the vertices associated with the edge e.) In a model whose graph
takes this form, the f; and g; are sometimes called ”transition features” and ”state
features”, respectively.

4.2. Methods of model parameterization for CRFs. The actual imple-
mentation of a CRF model requires that numerical values be estimated for the
model parameters, which is typically done using a maximum likelihood approach -
that is, by maximizing the conditional log likelihood of the training examples over
the parameter space. One reason for the widespread use of HMMs in biological
sequence analysis is the availability and simplicity of an efficient algorithm - the
Baum-Welch algorithm - for this task. So far, at least, no comparable algorithm
has emerged for CRFs, although a number of candidates have been put forward.
In this section we briefly mention various algorithms that have been proposed.
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4.2.1. Iterative scaling. In their original paper introducing CRFs ([LM]), Laf-
ferty et al. considered two variants of iterative scaling. They report, however,
extremely slow convergence, which renders this approach to training impractical
for problems of realistic size.

4.2.2. Gradient-based optimization. Wallach (JW]) considers several algorithms
that utilize the gradient of the objective function to maximize the conditional log-
likelihood of the training set, among them conjugate gradient and quasi-Newton
methods. However, her results are not conclusive.

4.2.3. Gradient tree boosting. Dietterich et al. considered an adaptation of
Friedman’s gradient tree boosting ([F]). This algorithm seems to have reasonable
convergence properties, although it is not clear if it is superior to the following
algorithm.

4.2.4. Gradient-based empirical risk minimization. Gross et al. considered min-
imizing the empirical risk (that is, the loss function on the training set); this is
another leading candidate for use in this task.

4.3. Other applications of CRFs in bioinformatics. In this section we
list a few applications of CRFs in bioinformatics. This list is not intended to be
complete (or even representative), but merely to give some idea of the diversity of
problems to which this modeling approach may be applied. We also note some of
the model features, to point out some of the various types of information that can
be incorporated into the model in a way which would be difficult or impossible with
HMDMs or their variants.

4.3.1. Gene finding. In [DV], DeCaprio et al. report on a gene prediction sys-
tem based on semi-Markov CRFs. They used a linear chain graph structure and
trained the model in two ways, the first using a gradient-based function optimizer to
maximize the conditional maximum likelihood, and the other a gradient-based op-
timization of maximum expected accuracy. The additional features include several
functions of gap and alignment positions.

4.3.2. Prediction of protein interactions sites. In [LL], Li et al. describe a CRF
model to predict the sites of protein-protein interaction. Their graph model was a
linear chain, with one vertex per residue and two possible states, "I” and ”N” (for
interface site and non-interface site). The features used included accessible surface
of a residue, a residue profile score computed from a position-specific scoring matrix,
and a transition feature that scored if the residue’s label was the same as that of the
preceding residue. The model was implemented using the FlexCRF toolkit ([PN]).
The model was compared with three other algorithms (neural networks, maximum
entropy model, and support vector machine) on various subsets of a set of 1276
chains from the Protein Data Base; the CRF model was found to be superior to or
competitive with the other algorithms.

4.3.3. Protein sequence pairwise alignment. In [DG], Do et al. describe CON-
TRAlign, a CRF-based modeling system for pairwise alignment of protein se-
quences, designed to be used in place of pair HMMs. They experimented with
several model topologies, including the simple three-state (i.e., Match, Insert-1,
and Insert-2) topology frequently used in pair HMM alignment algorithms. Addi-
tional features included counts of hydropathic and hydrophilic residues, and sec-
ondary structure and solvent accessibility information. They report results com-
petitive with available state-of-the art pair alignment methods using only sequence
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information, and superior performance when additional secondary structure and
physicochemical properties are incorporated.

4.4. Design of a CRF model for protein sequence family classifica-
tion. In this section we consider some design choices for a CRF model to be used
for classifying proteins into families. It is important to note here that what we are
planning is the solution not to a single machine learning problem, but to a class of
such problems. That is, we want to specify a general method for implementing, and
training a group of classification algorithms, with each algorithm able to recognize
the members of a single protein family (or superfamily), as opposed to constructing
an algorithm which, given the sequence of a protein, would assign the protein to
the correct choice from a large number of families. This approach to classifier con-
struction is sometimes referred to as a ”one against all” algorithm and is commonly
applied to the solution of multiple-valued classification problems with algorithms,
such as support vector machines, which are more suited to binary classification.

4.4.1. Topology of underlying graph. The first element to be specified in the
design of a CRF is the topology of the underlying dependency graph. Although the
use of linear chains is a common choice for this structure, it is not clear whether an
effective sequence classifier could be built on such a graph which could only classify
sequences of bounded length. The most likely structure for this graph is probably
some modification of an existing HMM transition graph structure. It is an open
research question whether it might be possible to automate learning the CRF graph
structure from the training set, rather than having it specified a priori.

4.4.2. Definition of feature functions. As noted above, one advantage of the
CRF modeling approach is the ease with which it can accomodate information in
addition to the sequence. Thus a CRF to recognize protein families could utilize
features such as amino acid composition, three-dimensional structure information
(if available), annotations of biological function, and phylogenetic information. We
also note that the statistical anomaly mentioned in section 3.2.1 could be avoided
by a feature function which assigned a probability to contiguous gap subsequence
that was not exponential in the length of the subsequence.

4.4.3. Selection of training set. The use in practice of a CRF model for rec-
ognizing protein families requires a training set for each protein family to be rec-
ognized. However, for research into the efficacy of this algorithm, it would be
desirable to choose for a first trial a family (or superfamily) on which the perfor-
mance of HMM methods has been problematic. As we noted above, the class of
G-coupled protein receptors was cited in [OM] as an example of a family for which
current alignment-based classification methods (such as HMMs) do not perform
well; this family would probably be a good choice for the experimental training set
for a new CRF model.

4.4.4. Parameterization algorithm. As we noted above, no algorithm for train-
ing CRFs has so far emerged as the dominant choice for this task, in the way that
the Baum-Welch algorithm has emerged to dominate the methods for the analogous
problem with HMMs. A preliminary evaluation of available approaches suggests
that the gradient tree boosting algorithm of Dietterich et al. ([DA]) would be a
good initial choice for this application of CRFs; this is, however, only a tentative
choice, and may be revised after some computational experience has been gained
with the CRF model.
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